Part Number Hot Search : 
124ML B1521RW HMC128G8 100MD6 TFA98 N431K H0025NL SS820
Product Description
Full Text Search
 

To Download IGB15N60T Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IGB15N60T trenchstop ? series q ifag ipc td vls 1 rev. 2 . 6 30.04.2015 low loss igbt : igbt in trenchstop ? and fieldstop technology features: ? very low v ce(sat) 1.5 v (typ.) ? m aximum junction temperature 175 c ? short circuit withstand time 5 ? s ? designed for frequency inverters for washing machines, fans, pum ps and vacuum cleaners ? trenchstop ? technology for 600 v applications offers : - very tight parameter distribution - high ruggedness, temperature stable behavior - very high switching speed ? p ositive temperature coefficient in v ce(sat) ? low emi ? low gate cha rge ? pb - free lead plating; rohs compliant ? qualified according to jedec 1 for target applications ? complete product spectrum and pspice models : http://www.infineon.com/igbt/ type v ce i c v ce(sat ), tj=25c t j,max marking code package IGB15N60T 600v 15a 1.5v 175 ? maximum ratings parameter symbol value unit collector - emitter voltage , t j 25 ? c v ce 600 v dc collector current , limited by t jmax t c = 25 ? c , value limited by bondwire t c = 100 ? c i c 26 23 a pulsed collector current, t p limited by t jmax i c p u l s 4 5 turn off safe operating area, v ce = 600v, t j = 175 ? c, t p = 1s - 4 5 gate - emitter voltage v ge ? 20 v short circuit withstand time 2 ) v ge = 15v, v cc ? 40 0v, t j ? 150 ? c t sc 5 ? s power dissipation t c = 25 ? c p t o t 130 w operating junction temperature t j - 40...+ 175 ? c storage temperature t s t g - 55...+ 1 5 0 soldering temperature (reflow soldering, msl1) 2 60 1 j - std - 020 and jesd - 022 2 ) allowed number of short circuits: <1000; time between short circuits: >1s. pg - to263 - 3 g c e
IGB15N60T trenchstop ? series q ifag ipc td vls 2 rev. 2 . 6 30.04.2015 thermal resistance parameter symbol conditions max. value unit cha racteristic igbt thermal resistance, junction C case r t h j c 1.15 k/w thermal resistance, junction C ambient r t h j a 6cm2 cu 40 electrical characteristic, at t j = 25 ? c, unless otherwise specified parameter symbol conditions value unit min. t yp. m ax. static characteristic collector - emitter breakdown voltage v ( b r ) c e s v ge = 0v , i c = 0 .2 ma 600 - - v collector - emitter saturation voltage v c e ( s a t ) v ge = 15 v , i c =1 5 a t j =2 5 ? c t j =1 7 5 ? c - - 1. 5 1. 9 2 .05 - gate - emitter threshold voltage v g e ( t h ) i c = 21 0 a , v ce = v ge 4. 1 4. 9 5.7 zero gate voltage collector current i c e s v ce = 6 00v , v ge = 0v t j =2 5 ? c t j =1 7 5 ? c - - - - 40 1000 a gate - emitter leakage current i g e s v ce = 0v , v ge =2 0 v - - 100 na transconductance g fs v ce = 20 v , i c =1 5 a - 8. 7 - s integrated gate resist or r g i n t - dynamic characteristic input capacitance c i s s v ce = 25 v , v ge = 0v , f = 1 mh z - 860 - pf output capacitance c o s s - 55 - reverse transfer capacitance c r s s - 24 - gate charge q g a t e v cc = 48 0 v, i c = 1 5 a v ge = 15 v - 87 - nc internal emitter inductance measure d 5mm (0.197 in.) from case l e - 7 - nh short circuit collector current 1 ) i c ( s c ) v ge = 15 v , t sc ? 5 ? s v c c = 4 0 0 v, t j = 1 5 0 ? c - 137.5 - a 1 ) allowed number of short circuits: <10 00; time between short circuits: >1s.
IGB15N60T trenchstop ? series q ifag ipc td vls 3 rev. 2 . 6 30.04.2015 switching characteristic, inductive load, at t j =25 ? c parameter symbol conditions value unit min. t yp. max. i gbt characteristic turn - on delay time t d ( o n ) t j = 2 5 ? c, v cc = 4 0 0 v, i c = 1 5 a, v ge = 0 / 1 5 v , r g = 1 5 ? , l ? = 1 5 4 n h , c ? = 3 9 pf l ? , c ? f r o m f i g . e energy losses include tail and diode reverse recovery. diode from ikw30n60t - 17 - ns rise time t r - 11 - turn - off delay tim e t d ( o f f ) - 188 - fall time t f - 50 - turn - on energy e on - 0.22 - mj turn - off energy e o f f - 0.35 - total switching energy e ts - 0.57 - switching characteristic, inductive load, at t j = 1 75 ? c parameter symbol conditions value unit min. t yp. max. igbt characteristic turn - on delay time t d ( o n ) t j = 1 7 5 ? c, v cc = 4 0 0 v, i c = 1 5 a, v ge = 0 / 1 5 v , r g = 1 5 ? , l ? = 1 5 4 n h , c ? = 3 9 pf l ? , c ? f r o m f i g . e energy losses include tail and diode reverse recovery. diode from ikw30n60t - 17 - n s rise time t r - 15 - turn - off delay time t d ( o f f ) - 212 - fall time t f - 79 - turn - on energy e on - 0.34 - mj turn - off energy e o f f - 0.47 - total switching energy e ts - 0.81 -
IGB15N60T trenchstop ? series q ifag ipc td vls 4 rev. 2 . 6 30.04.2015 i c , collector current i c , collector current f , switching frequency v ce , collector - emitter voltage figure 1 . collector current as a function of switching frequency ( t j ? 175 ? c, d = 0.5, v ce = 400v, v ge = 0/ 15v, r g = 15 ? ) figure 2 . safe operating area ( d = 0, t c = 25 ? c, t j ? 175 ? c; v ge = 0/ 15v) p tot , power dissipation i c , collector current t c , case temperature t c , case temperature figure 3 . power dissipation as a function of case temperature ( t j ? 175 ? c) figure 4 . collector current as a function of case temperature ( v ge ? 15v, t j ? 175 ? c) __ i cmax --- max. current limited by bondwire 10hz 100hz 1khz 10khz 100khz 0a 10a 20a 30a 40a t c =110c t c =80c 1v 10v 100v 1000v 0.1a 1a 10a 10s 50s 1ms dc t p =2s 10ms 25c 50c 75c 100c 125c 150c 0w 20w 40w 60w 80w 100w 120w 25c 50c 75c 100c 125c 150c 0a 5a 10a 15a 20a 25a i c i c
IGB15N60T trenchstop ? series q ifag ipc td vls 5 rev. 2 . 6 30.04.2015 i c , collector current i c , collector current v ce , collector - emitter voltage v ce , collector - emitter voltage figure 5 . typical output characteristic ( t j = 25c) figure 6 . typical output characteristic ( t j = 175c) i c , collector current v ce(sat), collector - emitt saturation vol tage v ge , gate - emitter voltage t j , junction temperature figure 7 . typical transfer characteristic (v ce =20v) f igure 8 . typical collector - emitter saturation voltage as a function of junction temperature ( v ge = 15v) 0v 1v 2v 3v 0a 5a 10a 15a 20a 25a 30a 35a 40a 15v 7v 9v 11v 13v v ge =20v 0v 1v 2v 3v 0a 5a 10a 15a 20a 25a 30a 35a 40a 15v 7v 9v 11v 13v v ge =20v 0v 2v 4v 6v 8v 0a 5a 10a 15a 20a 25a 30a 35a 25c t j =175c 0c 50c 100c 150c 0.0v 0.5v 1.0v 1.5v 2.0v 2.5v i c =15a i c =30a i c =7.5a
IGB15N60T trenchstop ? series q ifag ipc td vls 6 rev. 2 . 6 30.04.2015 t, switching times t, switching times i c , collector current r g , ga te resistor figure 9 . typical switching times as a function of collector current (inductive load, t j =175c, v ce = 400v, v ge = 0/15v, r g = 15 ?, figure 10 . typical switching times as a function of gate resistor (inductive load, t j = 175c, v ce = 400v, v ge = 0/15v, i c = 15 a, dynamic test circuit in figure e) t, switching times v ge(th ) , gate - emitt trshold voltag e t j , junction temperature t j , junction temperature figure 11 . typical switching times as a function of junction temperature (inductive load, v ce = 400v, v ge = 0/15v, i c = 1 5 a, r g =15 ?, figure 12 . gate - emitter threshold voltage as a function of junction temperature ( i c = 0.21 ma) 0a 5a 10a 15a 20a 25a 1ns 10ns 100ns t r t d(on) t f t d(off) ??? ??? ??? ??? ??? 10ns 100ns t r t d(on) t f t d(off) 25c 50c 75c 100c 125c 150c 10ns 100ns t r t d(on) t f t d(off) -50c 0c 50c 100c 150c 0v 1v 2v 3v 4v 5v 6v 7v m in. typ. m ax.
IGB15N60T trenchstop ? series q ifag ipc td vls 7 rev. 2 . 6 30.04.2015 e , switching energy los ses e , switching energy los ses i c , collector current r g , gate resistor figure 13 . typical switching energy losses as a function of collector current (inductive load, t j = 175c, v ce = 400v, v ge = 0/15v, r g = 15 ?, figure 14 . typical switching energy losses as a function of gate resistor (inductive load, t j = 175c, v ce = 400v, v ge = 0/15v, i c = 1 5 a, dynamic test circuit in figure e) e , switching energy los ses e , switching energy los ses t j , junction temperature v ce , collector - emitter voltage figure 15 . typical switching energy losses as a function of junction temperature (inductive load, v ce = 400v, v ge = 0/15v, i c = 1 5 a, r g = 15 ?, figure 16 . typical switching energy losses as a function of collector emitter voltage (inductive load, t j = 175c, v ge = 0/15v, i c = 1 5 a, r g = 15 ?, 0a 5a 10a 15a 20a 25a 0.0m j 0.4m j 0.8m j 1.2m j 1.6m j e ts * e off *) e on and e ts include losses due to diode recovery e on * ?? ??? ??? ??? ??? ??? ??? ??? ??? 0.2 m j 0.4 m j 0.6 m j 0.8 m j 1.0 m j 1.2 m j 1.4 m j 1.6 m j e ts * e on * *) e on and e ts include losses due to diode recovery e off 25c 50c 75c 100c 125c 150c 0.2m j 0.3m j 0.4m j 0.5m j 0.6m j 0.7m j 0.8m j 0.9m j e ts * e on * *) e on and e ts include losses due to diode recovery e off 300v 350v 400v 450v 0.0m j 0.2m j 0.4m j 0.6m j 0.8m j 1.0m j 1.2m j e ts * e on * *) e on and e ts include losses due to diode recovery e off
IGB15N60T trenchstop ? series q ifag ipc td vls 8 rev. 2 . 6 30.04.2015 v ge , gate - emitter voltage c, capacitance q ge , gate charge v ce , collector - emitter voltage figure 17 . typical gate charge ( i c =1 5 a) figure 18 . typical capacitance as a function of collector - emitter voltage ( v ge =0v, f = 1 mhz) i c(sc) , short circuit collector current t sc , short circuit withst and time v ge , gate - emittetr voltage v ge , gate - emitetr voltage figure 19 . typical short circuit collector current as a function of gate - emitter voltage ( v ce ? t j ? ? figure 20 . short circuit withstand time a s a function of gate - emitter voltage ( v ce =4 00v , start at t j = 25c, t jmax <150c) 0nc 20nc 40nc 60nc 80nc 100nc 0v 5v 10v 15v 480v 120v 0v 10v 20v 30v 40v 50v 10pf 100pf 1nf c rss c oss c iss 12v 14v 16v 18v 0a 50a 100a 150a 200a 10v 11v 12v 13v 14v 0s 2s 4s 6s 8s 10s 12s
IGB15N60T trenchstop ? series q ifag ipc td vls 9 rev. 2 . 6 30.04.2015 z thjc , transient thermal imped ance t p , pulse width figure 21 . igbt transient thermal imped ance ( d = t p / t ) r , ( k / w ) ? , ( s ) ? ? 0.13265 5.67*10 - 2 0.37007 1.558*10 - 2 0.30032 2.147*10 - 3 0.34701 2.724*10 - 4 1s 10s 100s 1ms 10ms 100ms 10 -2 k/w 10 -1 k/w 10 0 k/w single pulse 0.01 0.02 0.05 0.1 0.2 d =0.5 c 1 = ? 1 / r 1 r 1 r 2 c 2 = ? 2 / r 2
IGB15N60T trenchstop ? series q ifag ipc td vls 10 rev. 2 . 6 30.04.2015 p g - to263 - 3
IGB15N60T trenchstop ? series q ifag ipc td vls 11 rev. 2 . 6 30.04.2015 figure c. definition of diodes switching characteristics figure d. thermal equivalent circuit figure a. definition of switching times figure b. definition of switching losses i r r m 90% i r r m 10% i r r m di /dt f t r r i f i,v t q s q f t s t f v r di /dt r r q =q q r r s f + t =t t r r s f + p ( t ) 1 2 n t ( t ) j ? 1 1 ? 2 2 n n ? t c r r r r r r
IGB15N60T trenchstop ? series q ifag ipc td vls 12 rev. 2 . 6 30.04.2015 published by inf ineon technologies ag 81726 munich, germany ? 2015 infineon technologies ag all rights reserved. legal disclaimer the information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. with respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of t he device, infineon technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non - infringement of intellectual property rights of any third party. information for further information on t echnology, delivery terms and conditions and prices, please contact the nearest infineon technologies office ( www. infineon.com ) . warnings due to techn ical requirements, components may contain dangerous substances. for information on the types in question, please contact the nearest infineon technologies office. the infineon technologies component described in this data sheet may be used in life - support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of infineon technologies, if a failure of such components can reasonably be expected to cause the failure of that life - support, auto motive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. if they fail, it is reasonable to assume that the health of the user or other persons may be endangered.


▲Up To Search▲   

 
Price & Availability of IGB15N60T

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X